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The ordinary nonlinear Schrodinger equation for deep-water waves (found by a 
perturbation analysis to O(e3) in the wave steepness e) compares unfavourably with 
the exact calculations of Longuet-Higgins (1978) for E > 010. Dysthe (1979) showed 
that a significant improvement is found by taking the perturbation analysis one step 
further to O(e4). One of the dominant new effects is the wave-induced mean flow. We 
elaborate the Dysthe approach by investigating the effect of the wave-induced flow 
on the long-time behaviour of the Benjamin-Feir instability. The occurrence of a 
wave-induced flow may give rise to  a Doppler shift in the frequency of the carrier 
wave and therefore could explain the observed down-shift in experiment (Lake et al. 
1977). However, we present arguments why this is not a proper explanation. Finally, 
we apply the Dysthe equations to a homogeneous random field of gravity waves and 
obtain the nonlinear energy-transfer function recently found by Dungey & Hui 
(1979). 

1. Introduction 
It is well-known that a finite-amplitude uniform train of surface gravity waves is 

unstable to modulational perturbations with sufficiently long wavelength (Bcnjamin- 
Feir instability). Benjamin & Feir (1967) obtained a fair agreement between the 
experimentally determined growth rates of the sidebands and theory, although the 
experimental values were systematically below the theoretical curve (henceforth to 
be called the Benjamin-Feir growth-rate curve). This theoretical growth-rate curve 
is most easily determined from the nonlinear Schrodinger equation, which is the 
evolution equation for the slowly varying envelope of the carrier wave. We remark 
that the nonlinear Schrodinger equation has only a restricted validity. It assumes 
that the spatial variations of the envelope are of the same order as the wave steepness 
of the carrier wave. Therefore the Benjamin-Weir growth-rate curve also has a 
restricted validity. This was pointed out by Longuet-Higgins (1978), who solved the 
exact equations for surface gravity waves by means of the computer. The agreement 
of his theoretical results with experiments of Benjamin & Feir (1967) and Lake d al. 
(1977) is even better. Similar results were obtained by Crawford et al. (1981) from 
the so-called Zakharov equations. On the other hand, Dysthe (1979) gave an 
improved version of the nonlinear Schrodinger equation by including higher-order 
effects. Surprisingly, his analysis showed that up to a wave steepness of 0.25 the 
effect of the modulation-induced current could explain the difference between the 
approximate results of Benjamin & Peir and the exact result of Longuet-Higgins. The 
Dysthe equations therefore seem to give an appropriate description of the dynamioal 
behaviour of e.g. sea waves, since for those waves the wave steepness is small enough. 

t Permanent address: K.N.M.1, Ue Bilt, The Netherlands 
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In  this paper we intend to elaborate the Dysthe approach. In $ 2  we present a coupled 
set of equations for the envelope of the carrier wave and the wave-induced mean flow. 
We solve for the wave-induced mean flow to obtain a single evolution equation for 
the envelope of the wave (to be called the fourth-order envelope equation). We intend 
to study some interesting properties of the fourth-order envelope equation. Firstly, 
we review the linear stability analysis of a uniform wavetrain, as given by Dysthe 
( 1979), and we give additional evidence to support Dysthe’s conclusion that the 
higher-order effect of the wave-induced flow yields a surprising improvement of the 
theoretical results ($2). Secondly, in $3  we study the long-time behaviour of a single 
unstable mode near the threshold for instability. The long-time behaviour of this 
instability shows recurrence, qualitatively in agreement with experiments of Lake 
et al. (1977). For the latter experiment also a shift in the frequency of the carrier wave 
was found. The occurrence of a wave-induced current may give rise to a Doppler shift 
in the frequency shift and therefore could explain the observed shift in experiment. 
However, we show from the analysis that  in the framework of the fourth-order 
envelope equation the frequency shift is periodic in space and time, in contrast with 
observation (Lake et al. 1977). Therefore, other effects, such as dissipation, must be 
responsible for the observed frequency shift. Finally, in $4 we briefly study the 
problem of energy transfer due to resonant four-wave interactions for a random 
homogeneous field of gravity waves. Longuet-Higgins (1976) considered this problem 
for the ordinary nonlinear Schrodinger equation and found that the transfer function 
is just a constant. From the fourth-order envelope equation one would therefore 
expect corrections to the transfer function found by Longuet-Higgins, which are 
proportional to the spectral width. And indeed, the transfer function we obtain from 
the fourth-order envelope equation is just the one given by Dungey & Hui (1979). 
These authors showed that the effect of spectral width on the nonlinear energy 
transfer is far from negligible. Hence, also for a random wavefield the higher-order 
effects in the fourth-order envelope equation are surprisingly important. Section 5 
summarizes our conclusions. 

2. The evolution equations and linear theory 
I n  this section we present the fourth-order envelope equation for water waves in 

a fluid of infinite depth. We are interested in the evolution of a narrow-band spectrum 
with small wave steepness so that  in first order the velocity potential # is given 

# z (Aeie+c.c.)ekoz, 0 = k,x--w,t, ( 1 )  by 

where wo and k, are the frequency and wavenumber of the carrier wave (ui = glc,), 
and C.C. means complex conjugate. We note that the carrier wave propagates in the 
x direction; g is the acceleration due to  gravity, which is pointed in the negative 
z-direction. The complex amplitude A is slowly varying in time and space (x, y, 2 ) .  

For deep water, Zakharov (1968) obtained the nonlinear Schrodinger equation as the 
evolution equation for the complex amplitude A .  Dysthe (1979) extended this to 
include higher-order effects. Using the method of multiple scales, he obtained a 
coupled set of evolution equations for the envelope A of the carrier wave and the 
wave-induced mean flow (with potential 6). (See equations (2.19) and (2.21) of 
Dysthe’s paper. Note that the third term on the right-hand side of (2.19) should have 
a minus sign.) One can easily solve the equations for the potential 6 of the mean flow 

by means of the Fourier-transform technique to arrive a t  a single equation for the 
envelope of the wave (henceforth to be called the fourth-order envelope equation). 
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Introducing dimensionless units, t’ = w,t, x’ = kox ,  A’ = 2ki Alw, ,  and dropping the 
primes, the equation for the dimensionless envelope A (which, for a uniform 
wavetrain, is now just the constant wave steepness) reads 

i a  1 a 2  1 a 2  
2i - A + - - A  ---A+---A-IA12A 

( f t  2ax  ) 4 a x 2  2 a g  

i a 3  a 3  a a a -8 (a23 - 6 a w )  A + &A (Bar A * - A * - A - iilA l2 - A + A 2  - /A1 2 ,  ( 2 )  ax ’ 1  ax ax 
- 

where the two-dimensional version of the Hilbert transform 2 reads 

I n  deriving ( 2 )  it  was assumed that A = O(e) and a derivative increases the order by 
one. The ordinary nonlinear Schrodinger equation is obtained from ( 2 )  by neglecting 
its right-hand side, which is of order e4. The small wave-induced current, which is 
caused by the radiation stresses of the modulated wavetrain (Longuet-Higgins & 
Stewart 1964), is among others represented by the term involving the Hilbert 
transform 2. I n  the remaining part of this paper we intend to study some properties 
of (4). To that end we first review the linear stability of a uniform wavetrain (Dysthe 
1979). Of special interest is the effect of the wave-induced current. 

Dysthe studied the linear stability of a finite-amplitude uniform wavetrain to 
two-dimensional perturbations and compared the results with numerical calculations 
of Longuet-Higgins (1978). The agreement was surprisingly good for a wave steepness 
A < 0.25. 

We, however, consider the stability of a uniform wavetrain to one-dimensional 
perturbations only. Since Dysthe showed that only the term involving the Hilbert 
transform contributes to the stability results, we start in the one-dimensional case 
with 

where we have transformed to a frame moving with the group velocity and the 
one-dimensional version of the Hilbert transform is given by 

Here the symbol 9 stands for principal value. In  addition, to obtain (4) from (2) we 
have used a = A exp (+&lit) (where A,  is a constant) and have dropped the tilde. 
A steady-state solution of ( 5 )  is A = A ,  and to study its stability we perturb i t  

(6) 
according to 

Linearizing around the steady state, we obtain for normal modes of the form 
A ,  - expi(kx+wt) the dispersion relation 

A = A,+A, ,  A ,  6 A,. 

0 2  = Qk2(&2-A;(1 -I/%/)). (7 1 
The effect of the wave-induced current is given by the modulus-of-k term.? From 
(7)  we infer a t  once that we have instability of the uniform wavetrain (12 < 0) if 
the wave steepness A,  is sufficiently large (modulational instability), i.e. 

t The neglected terms only give contributions of the order of At to  the expression of w2 
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FIGTJRE 1. The normalized sideband growth rate 477 Im ( w )  as a function of wave steepness A, for 
two values of modulation wavenumber k. -, (7); ---, theoretical result of Benjamin & Feir. 
Experimental results: 0, k = 0.4, Lake ~t al. (1977); 0 ,  k = 0 2 ,  Lake et al. (1977); A, k = 0 2 ,  
Benjamin (1967). 

At > Qk2/( 1 - lkl). This feature is illustrated in figure 1, where we have plotted the 
normalized sideband growth rate 477 Im ( w )  versus the wave steepness A ,  for two 
values of k .  To see the effect of the wave-induced current more clearly we have plotted 
for comparison the growth-rate curve of the ordinary nonlinear Schrodinger equation 
(i.e. (7) without the modulus of k term). Also shown are experimental results of 
Benjamin (1967) and Lake et al. (1977). We conclude that inclusion of the effect of 
wave-induced current indeed gives an improvement, especially for k = 0.4. Figure 2 
gives the dimensionless growth rate Im(w)/iAi as a function of the normalized 
wavenumber k/2A, for various values of the wave steepness A,. The curve with 
A, = 0 corresponds to the ordinary nonlinear Schrodinger result. It is remarkable that 
even for A, = 0.1 the effect of the wave-induced current is considerable. For 
comparison, we have also shown in figure 2 results of Crawford et al. (1981). As a 
starting point for the stability analysis of a uniform wavetrain, these authors used 
the Zakharov equation for weakly nonlinear water waves, an equation which retains 
all the higher-order dispersion effects, but which is correct to third order in amplitude 
only. The results from the fourth-order envelope equation seem to agree with those 
of the Zakharov equation for a wave steepness A ,  < 0.24.25.  

To summarize the results of the stability of a uniform wavetrain in one dimension 
we conclude that the addition of the effect of the wave-induced current to the 
nonlinear Schrodinger equation gives a surprising improvement. Thus, as far as 
stability properties are concerned i t  is sufficient to  use the simplified version of the 
modified nonlinear Schrodinger equation, namely (4). I n  $ 3  we use (4) to study the 
nonlinear stability of the finite-amplitude, uniform wavetrain. 
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FIQURE 2. Sideband growth rate as a function of modulation wavenumber for various values of 

wave steepness A,. -, (7 ) ;  ---, results of Crawford et aZ. (1981). 

3. Recurrence 
I n  a previous paper (Janssen 1981) the long-time behaviour of the modulational 

instability (also called sideband instability or the Benjamin-Feir instability) was 
studied. By means of the multiple timescale method an approximate solution to the 
ordinary nonlinear Schrodinger equation was found, exhibiting recurrence (cf. the 
Fermi-Pasta-Ulam (1955) recurrence phenomenon). The result was in qualitative 
agreement with the numerical results of Yuen & Ferguson (1978) and the experiment 
of Lake et al. (1977). Here we briefly consider the effect of the wave-induced current 
on the long-time behaviour of the modulational instability. We also discuss the 
generation of the frequency shift induced by the modulational instability, and we 
investigate whether there is a possible connection with the frequency shift found in 
the experiment of Lake et al. (1977). 

I n  order to make a comparison with previous results (Janssen 1981) easier we 
introduce the scaling t = 4 ~ ~ t ’ ,  x = KX’ ,  A = A ’ / ( ~ K ) $ .  Dropping the primes we may 
cast (4) in the form 

The dispersion relation (corresponding to (7)) for modulations of a uniform wavetrain 

(9) 
reads in the new variables 

In  order to investigate the effect of nonlinearity, we consider the initial-value problem 
for one particular modulation with a fixed wavenumber near the threshold for 
instability. The modulation is neutrally stable if the parameter K equals its critical 

(10) 
k2 

value K~ given by 

4Ai 

w2 = + k 2 ( k 2 - 4 A i ( ~ - l k l ) ) .  

K, = ~ -k Ikl. 
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K = K ~ (  1 + A2), 

y = AkA,(K,);. (12) 

( 1 1 )  

then the growth rate y = I Im (o)l of the modulation with wavenumber k reads 

Hence a slight increase of the critical parameters of the order A2 already gives a growth 
rate of the modulation of the order A. This singular behaviour near the threshold for 
instability, which is also illustrated by figures 1 and 2, is typical for quadratic 
dispersion relations. It suggests the following 'expansion ' of the time derivative : 

where all r ,  are assumed to be indcpendent of each other. In  addition A is expanded 
in powers of A : 03 

A = C. AzAl, (14) 
1 - 0  

where the coefficients of expansion A, are functions of all 7, and of x, except A,, which 
is assumed to be a constant. Substitution of (l)) ,  (13) and (14) into the fourth-order 
envelope equation (8) gives a hierarchy of equations of the form 

Yyf, = s, (1 = 1 ,  2, 3 ) . . .  ), (15) 

where W, is a column vector with components Re(AI) and Im(A,), 2' is a linear 
operator (i.e. A?v, = 0 is just the linear problem) and S ,  is a source term containing 
only lower-order y f p  (13 < Z- 1).  

We shall not give the details of the solution of (15) because they are similar to a 
case treated previously (Janssen (1981 ), where the ordinary nonlinear Schrodingcr 
equation was treated in this fashion). We merely present the final results. To second 

(16) 
order we obtain A = ( A ,  + AAl + A2A2) exp iv, 
where A ,  is real, 

A, = a exp ikx + cc . ,  

-expBikx+c.c. 
- l ~ 1 ~ + ~  ik2-  IkI A;( 

A, =- 
A ,  $k2+IklA; A, 

(T = ( ~ ( 0 ) -  - ~ U ~ ~ G ? T ; -  
A; k2 s" 0 

Here the evolution in time of the complex amplitude a follows from the requirement 
that  the solutions of the inhomogeneous equation (15) be periodic in x-space (cf. 
Janssen 1981). The result is the following nonlinear evolution equation: 

a 2  
-u-~2a+/32la12a = 0, 
87; 

where 7 = KA, (K~)? ,  which is just the expression of the linear growth rate (cf. (12)), 
and? 

p2 = 2 k 2 ~ , .  ( 1 7 b )  

t In the expression for p2 we have neglected terms of order A:, consistent with a similar neglect 
of terms in the growth rate. 
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The effect of wave-induced current is represented by the terms with the modulus of 
k .  Since in the derivation of the nonlinear Schrodinger equation it was assumed that 
the wave steepness A, is of the same order as the modulation wavenumber k ,  we see 
at  once that the effect of the wave-induced current may be neglected if Ikl 4 1. In  
the latter limit we rediscover the previous results on the ordinary nonlinear 
Schrodinger equation (Janssen 1981). As a final check, we note that (8) has a number 
of conserved quantities, e.g. 

gJIAlzdx dt = 0, 

-J(AA:--A*A,)dx d = 0, 
dt 

Here, the integration in x-space extends over one wavelength. To second order in A ,  
we have checked that the solution (16) does indeed satisfy these conservation laws. 

It is well known that (17)  gives periodic solutions for Pz > 0, since i t  is just the 
equation of motion of a particle in a potential well V ( ( a ( )  = -~y21a(2++~P21a14. Thus, 
although the modulation is linearly unstable for small initial amplitudes, nonlinear 
effects are stabilizing, giving a periodic motion in time, since no disssipative effects 
are incorporated. Actually, in this case the main stabilization of the unstable 
modulation stems from the modification of the equilibrium (i.e. the term - (aI2/A, 
in the expression for A ,  of (16)). 

Hence, we have shown that the long-time behaviour of the modulational instability 
exhibits recurrence, qualitatively in agreement with experiments of Lake et al. (1977). 
I n  addition, i t  was observed that the upper sidebands have more energy than the 
lower sidebands. This feature is also reflected by our solution. To see this, we remark 
that Lake et al. have given power spectra of the surface elevation 7.  To second order 
in the wave steepness e, it has been shown by Hasimoto & Ono (1972) that the relation 
between 7 and the complex amplitude A of the velocity potential @ is given by 

which, because of the aA/dx  term, clearly illustrates the asymmetry between the 
lower and the upper sidebands. 

However, in the experiment of Lake et al. also a down-shift in the frequency of 
the carrier wave was observed. Before we calculate this down-shift in the frequency, 
we note that this experiment refers to  a boundary-value problem, instead of the 
initial-value problem considered in this paper. Therefore, the down-shift in the 
frequency of the experiment of Lake et al. corresponds to a shift in the wavenumber 
of the carrier wave in the initial-value problem. This wavenumber shift Sk, may be 
obtained from the phase CT of A (cf. (16)): 

aCT 4 a 
, - a x  ka7, 

Sk - - = -- ( a )  sin kx ,  

where, for simplicity, we have assumed that a is real. The point to be made now is 
that 6k, is periodic in space and time, in contrast with the findings of Lake et al. (1977). 
For example, for the initial conditions a(0)  = a,, da(o)/d7, = 0 we obtain from (17)  
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that  the solution returns to the initial conditions after a time T (the recurrence time). 
This is of course the very nature of recurrence. Hence after a time T the shift in 
wavenumber vanishes, which is certainly not the case in the experiment of Lake 
et al. 

Thus the x-component of the wave-induced current (i.e. a$/ax, giving the 
Hilbert-transform term in (8)) gives rise to  a Doppler shift in e.g. the frequency of 
the carrier wave. However, this Doppler shift is periodic in time and space, in contrast 
with experimental findings. 

We therefore conclude that other effects, not included in the present treatment, 
might explain the observed downshift of the frequency. An obvious candidate seems 
to be dissipation, although the nature of the dissipation process is unclear a t  the 
moment. 

We only applied a simplified version of the fourth-order envelope equation to the 
stability of a finite-amplitude uniform wavetrain. We have checked, however, that 
the neglected terms only contribute t o  order At in the evolution equation for the 
complex amplitude a (cf. (17 a ) ) ,  i.e. they are of the same order as the neglected terms 
in the growth rate r2. We are therefore justified in applying the simplified version 
of the fourth-order envelope equation to the nonlinear stability of a finite-amplitude 
uniform wavetrain. 

4. Nonlinear energy transfer in a narrow wave spectrum 
The previous sections were concerned with a deterministic field of gravity waves. 

We investigated the stability of a uniform wavetrain and studied the long-time 
behaviour of a simplified version of the fourth-order envelope equation. Let us now 
return to the fourth-order envelope equation (2) and let us consider the problem of 
energy transfer due to nonlinear interactions for a random homogeneous field of 
gravity waves. 

This problem has been given much attention in recent years, and i t  was Hasseimann 
(1962) who obtained the evolution equation for the action density from a general 
perturbation theory. Longuet-Higgins (1976) derived the narrow-band limit of 
Hasselmann’s equation by starting from the ordinary nonlinear Schrodinger equation. 
Dungey & Hui (1979) pointed out, however, that the effect of spectral width for a 
typical wind-wave field on the nonlinear energy transfer is far from negligible. They 
were able to show this by expanding Hasselmann’s coupling coefficient as a power 
series in a small parameter (which is a measure of the spectral width), and retaining 
only the first-order term. I n  the limit of vanishing spectral width the result of 
Longuet-Higgins was rediscovered. 

I n  this section it is shown that the equation for the action which follows from the 
fourth-order envelope equation (2) is just the equation for the action density as 
derived by Dungey & Hui (1979). Actually, one should expect this, and we shall show 
that the higher-order effects in the fourth-order envelope equation correspond to the 
first-order effect of spectral width in the equation for the nonlinear energy transfer 
of Dungey & Hui (1979). 

I n  order to see this we write A as 

A = dk a(k, t )  ei(k. x-nt) ,  121) 

(22) 

s 
where 0 = w - wo obeys the dispersion relation 

= q h - q 2 + 1  Z- lh3-q  2 
2 8 4 p  16 S p .  
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Here, k = (A ,  p)  and w,, = (gk,)? is the frequency of the carrier wave with wavenumber 
12,. Substituting (21) into ( 2 )  we obtain after some algebra the following equation for 
the amplitude a :  

s a 
3% = -& dk, dk, dk4 4, ,, ,, a,* a, a4 6(kl + k ,  - k ,  - k 4 )  exp i ( w ,  + w2 -0, -w4)  t ,  

where 

Here we have introduced the shorthand notation ai = a(ki)  and have replaced 0 by 
w in %he exponent, because they differ only by a constant factor. We next return to 
dimensional units by observing that in (23 )  the time is made dimensionless by means 
of the frequency w,, and the wavenumber k is made dimensionless by means of the 
wavenumber k,. Using (19), we write 

where bb* is just the action density. The result is 

dk, dk, dk4 q, 2, ,, b,* b ,  6, ( k ,  + k , -  k , -  k 4 )  expi(w, + w ~ - - w ~ - - o ~ )  t ,  

11- -_  1 (4 
2 [ (A ,  - A , ) ,  + (PI - ~ 3 ) ~ 1 +  

In  passing we note that the ordinary nonlinear Schrodinger equation would only give 
the factor 1 in the expression for q, 2 ,  ,, 4 ,  so that the remaining terms stem from the 
higher-order effects in the fourth-order envelope equation. 

Thc next step is to obtain an evolution equation for the action density n = (bb*), 
where the angle brackets denote an ensemble average. The procedure to obtain the 
evolution of the action density is well-known (cf. Hasselmann 1962; Davidson 1969, 
1972; Longuet-Higgins 1976; Crawford et al. 1981), so we omit the details. 

The eventual result is 

%"I d = J-dk2dk,dk4G1,2,3,46(k1+k2-k3-k4) 

+ w 2 - w 3 - w 4 )  "%n4(n1+"~)  -"I n2(n3 + ( 2 5 )  

where GI, ,, ,, = 4nTf, 2, ,, 4 .  Hence, to first order in the spectral width, measured by 
k lk , ,  we obtain 

- (4 - A,), 
+ (pi -p3)212 

The same exprcssion was obtained by Dungey & Hui (1979), expanding Webb's (1978) 
version of the coupling coefficient of Hasselmann (1962) in powers of the spectral 
width. In  the limit of vanishing spectral width (corresponding to the neglect of the 
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right-hand side of (2)) we rediscover the result of Longuet-Higgins (1976). In  this 
limit, for spectra that are symmetrical with respect to the carrier wavenumber k,, 
the resulting energy transfer is symmetrical (Dungey & Hui 1979). The terms 
representing the effect of finite spectral width can be divided in two groups. The terms 
involving the square root, which arise from the Hilbert-transform term in (2), also 
give a symmetrical energy transfer if the spectrum is symmetrical, whereas the term 
3(h, + h , ) / k ,  (arising from the remaining higher-order terms in (2)) g' ives an 
asymmetrical energy transfer. We should emphasize that Dungey & Hui (1979) have 
shown numerically that the effect of finite spectral width is considerable, just as in 
the deterministic case treated in 9§2 and 3 the effect of wave-induced current is far 
from negligible. Using the simple coupling coefficient (27), these authors obtained a 
close agreement with the Jonswap calculations (Hasselmann et al. (1973); they used 
the full expression for G) on the forward face of the spectrum. 

We are therefore inclined to conclude that the fourth-order envelope equation (4) 
is a good starting point for the study of nonlinear effects in surface gravity waves. 

5.  Conclusions 
The ordinary nonlinear Schrodinger equation for deep-water waves found by a 

perturbation analysis to O(c3) in the wave steepness c compares unfavourably with 
the exact calculations of Longuet-Higgins, the results of Crawford et al. (1981) (who 
started from the Zakharov equations) and experimental results of Benjamin & Feir 
(1967) and Lake et al. (1977). Dysthe (1979) achieved a considerable improvement 
by taking the perturbation analysis one step further to  O(c4). The result is a coupled 
set of evolution equations for the envelope of the carrier wave and the wave-induced 
mean flow. From this set of equations we obtain a single evolution equation for the 
envelope, called the fourth-order envelope equation. The fourth-order effects give a 
surprising improvement compared with the ordinary nonlinear Schrodinger equation 
in many respects. Regarding the stability of a finite-amplitude uniform wavetrain 
the dominant new effect is the mean-flow response to non-uniformities in the 
radiation stress. For a wave steepness e < 0.25, the growth rate of the Benjamin-Feir 
instability is in good agreement with results of Crawford et al. (1981) and experiment 
(Benjamin & Feir 1967; Lake et al. 1977). Also, a weakly nonlinear calculation shows 
that the amplitude of an unstable mode near the threshold for instability is periodic 
in time, therefore exhibiting recurrence. However, the observed irreversible downshift 
is not found from the fourth-order envelope equation, possibly because of the absence 
of dissipation. Finally, for a random homogeneous field of gravity waves, we derived 
the nonlinear energy transfer function, which agrees with the results of Dungey & 
Hui (1979). The effect of finite spectral width as found by Dungey & Hui corresponds 
to the O(e4) terms of the fourth-order envelope equation. For a symmetrical spectrum 
these terms give rise to  an asymmetrical energy transfer. It is perhaps of interest to 
note that Roskes (1977) (although in his equation the Hilbert-transform term is 
missing) found these fourth-order terms to  have a symmetry-breaking effect on the 
evolution of a single soliton, i.e. the soliton splits up into a large pulse followed by 
a small one. 

We therefore conclude that the fourth-order envelope equation seems to be a good 
starting point for the study of nonlinear sea waves, since they usually have a wave 
steepness which is small enough (i.e. e < 0.25). 

The author is pleased to acknowledge useful discussions with M. J .  McGuinness, 
P. G. Saffman and G. B. Whitham. 
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